Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Immunol ; 15: 1382318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646538

RESUMO

The respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections associated with numerous hospitalizations. Recently, intramuscular (i.m.) vaccines against RSV have been approved for elderly and pregnant women. Noninvasive mucosal vaccination, e.g., by inhalation, offers an alternative against respiratory pathogens like RSV. Effective mucosal vaccines induce local immune responses, potentially resulting in the efficient and fast elimination of respiratory viruses after natural infection. To investigate this immune response to an RSV challenge, low-energy electron inactivated RSV (LEEI-RSV) was formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) or 1,2-dioleoyl-3-trimethylammonium-propane and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DD-LEEI-RSV) for vaccination of mice intranasally. As controls, LEEI-RSV and formalin-inactivated-RSV (FI-RSV) were used via i.m. vaccination. The RSV-specific immunogenicity of the different vaccines and their protective efficacy were analyzed. RSV-specific IgA antibodies and a statistically significant reduction in viral load upon challenge were detected in mucosal DD-LEEI-RSV-vaccinated animals. Alhydrogel-adjuvanted LEEI-RSV i.m. showed a Th2-bias with enhanced IgE, eosinophils, and lung histopathology comparable to FI-RSV. These effects were absent when applying the mucosal vaccines highlighting the potential of DD-LEEI-RSV as an RSV vaccine candidate and the improved performance of this mucosal vaccine candidate.


Assuntos
Anticorpos Antivirais , Imunidade nas Mucosas , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Células Th2 , Vacinas de Produtos Inativados , Animais , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/administração & dosagem , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/imunologia , Camundongos , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Feminino , Células Th2/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Imunização , Vírus Sincicial Respiratório Humano/imunologia , Vacinação/métodos , Vírus Sinciciais Respiratórios/imunologia , Carga Viral , Imunoglobulina A/imunologia
2.
Int J Med Microbiol ; 313(6): 151590, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38056089

RESUMO

The Q-GAPS (Q fever GermAn interdisciplinary Program for reSearch) consortium was launched in 2017 as a German consortium of more than 20 scientists with exceptional expertise, competence, and substantial knowledge in the field of the Q fever pathogen Coxiella (C.) burnetii. C. burnetii exemplifies as a zoonotic pathogen the challenges of zoonotic disease control and prophylaxis in human, animal, and environmental settings in a One Health approach. An interdisciplinary approach to studying the pathogen is essential to address unresolved questions about the epidemiology, immunology, pathogenesis, surveillance, and control of C. burnetii. In more than five years, Q-GAPS has provided new insights into pathogenicity and interaction with host defense mechanisms. The consortium has also investigated vaccine efficacy and application in animal reservoirs and identified expanded phenotypic and genotypic characteristics of C. burnetii and their epidemiological significance. In addition, conceptual principles for controlling, surveilling, and preventing zoonotic Q fever infections were developed and prepared for specific target groups. All findings have been continuously integrated into a Web-based, interactive, freely accessible knowledge and information platform (www.q-gaps.de), which also contains Q fever guidelines to support public health institutions in controlling and preventing Q fever. In this review, we will summarize our results and show an example of how an interdisciplinary consortium provides knowledge and better tools to control a zoonotic pathogen at the national level.


Assuntos
Coxiella burnetii , Saúde Única , Febre Q , Animais , Humanos , Coxiella burnetii/genética , Febre Q/epidemiologia , Febre Q/prevenção & controle , Zoonoses/epidemiologia , Zoonoses/prevenção & controle , Estudos Interdisciplinares
3.
Front Cell Infect Microbiol ; 13: 1279147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035335

RESUMO

Introduction: West Nile Virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes. Especially in the elderly or in immunocompromised individuals an infection with WNV can lead to severe neurological symptoms. To date, no human vaccine against WNV is available. The Envelope (E) protein, located at the surface of flaviviruses, is involved in the invasion into host cells and is the major target for neutralizing antibodies and therefore central to vaccine development. Due to their close genetic and structural relationship, flaviviruses share highly conserved epitopes, such as the fusion loop domain (FL) in the E protein, that are recognized by cross-reactive antibodies. These antibodies can lead to enhancement of infection with heterologous flaviviruses, which is a major concern for potential vaccines in areas with co-circulation of different flaviviruses, e.g. Dengue or Zika viruses. Material: To reduce the potential of inducing cross-reactive antibodies, we performed an immunization study in mice using WNV E proteins with either wild type sequence or a mutated FL, and WNV E domain III which does not contain the FL at all. Results and discussion: Our data show that all antigens induce high levels of WNV-binding antibodies. However, the level of protection against WNV varied, with the wildtype E protein inducing full, the other antigens only partial protection. On the other hand, serological cross-reactivity to heterologous flaviviruses was significantly reduced after immunization with the mutated E protein or domain III as compared to the wild type version. These results have indications for choosing antigens with the optimal specificity and efficacy in WNV vaccine development.


Assuntos
Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Humanos , Animais , Camundongos , Idoso , Vírus do Nilo Ocidental/genética , Proteínas do Envelope Viral/genética , Imunização , Anticorpos Antivirais , Proteínas Recombinantes/genética
4.
Viruses ; 15(9)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37766253

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections in the elderly and in children, associated with pediatric hospitalizations. Recently, first vaccines have been approved for people over 60 years of age applied by intramuscular injection. However, a vaccination route via mucosal application holds great potential in the protection against respiratory pathogens like RSV. Mucosal vaccines induce local immune responses, resulting in a fast and efficient elimination of respiratory viruses after natural infection. Therefore, a low-energy electron irradiated RSV (LEEI-RSV) formulated with phosphatidylcholine-liposomes (PC-LEEI-RSV) was tested ex vivo in precision cut lung slices (PCLSs) for adverse effects. The immunogenicity and protective efficacy in vivo were analyzed in an RSV challenge model after intranasal vaccination using a homologous prime-boost immunization regimen. No side effects of PC-LEEI-RSV in PCLS and an efficient antibody induction in vivo could be observed. In contrast to unformulated LEEI-RSV, the mucosal vaccination of mice with PC formulated LEEI-RSV showed a statistically significant reduction in viral load after challenge. These results are a proof-of-principle for the use of LEEI-inactivated viruses formulated with liposomes to be administered intranasally to induce a mucosal immunity that could also be adapted for other respiratory viruses.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Humanos , Criança , Camundongos , Animais , Pessoa de Meia-Idade , Idoso , Lipossomos , Elétrons , Anticorpos Antivirais , Pulmão , Imunidade nas Mucosas , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
5.
Parasitol Res ; 122(8): 1819-1832, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37233817

RESUMO

Radiation-attenuated intracellular parasites are promising immunization strategies. The irradiated parasites are able to invade host cells but fail to fully replicate, which allows for the generation of an efficient immune response. Available radiation technologies such as gamma rays require complex shielding constructions and are difficult to be integrated into pharmaceutical production processes. In this study, we evaluated for the first time low-energy electron irradiation (LEEI) as a method to generate replication-deficient Toxoplasma gondii and Cryptosporidium parvum. Similar to other radiation technologies, LEEI mainly damages nucleic acids; however, it is applicable in standard laboratories. By using a novel, continuous, and microfluidic-based LEEI process, tachyzoites of T. gondii and oocysts of C. parvum were irradiated and subsequently analyzed in vitro. The LEEI-treated parasites invaded host cells but were arrested in intracellular replication. Antibody-based analysis of surface proteins revealed no significant structural damage due to LEEI. Similarly, excystation rates of sporozoites from irradiated C. parvum oocysts were similar to those from untreated controls. Upon immunization of mice, LEEI-attenuated T. gondii tachyzoites induced high levels of antibodies and protected the animals from acute infection. These results suggest that LEEI is a useful technology for the generation of attenuated Apicomplexan parasites and has potential for the development of anti-parasitic vaccines.


Assuntos
Criptosporidiose , Cryptosporidium , Parasitos , Toxoplasma , Animais , Camundongos , Elétrons , Microfluídica , Oocistos , Anticorpos
6.
PLoS One ; 17(10): e0263861, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36256664

RESUMO

BACKGROUND: The currently used SARS-CoV-2 mRNA vaccines have proven to induce a strong and protective immune response. However, functional relevance of vaccine-generated antibodies and their temporal progression are still poorly understood. Thus, the central aim of this study is to gain a better understanding of systemic and mucosal humoral immune response after mRNA vaccination with BNT162b2. METHODS: We compared antibody production against the S1 subunit and the RBD of the SARS-CoV-2 spike protein in sera of BNT162b2 vaccinees, heterologous ChAdOx1-S/BNT162b2 vaccinees and COVID-19 patients. We monitored the neutralizing humoral response against SARS-CoV-2 wildtype strain and three VOCs over a period of up to eight months after second and after a subsequent third vaccination. RESULTS: In comparison to COVID-19 patients, vaccinees showed higher or similar amounts of S1- and RBD-binding antibodies but similar or lower virus neutralizing titers. Antibodies peaked two weeks after the second dose, followed by a decrease three and eight months later. Neutralizing antibodies (nAbs) poorly correlated with S1-IgG levels but strongly with RBD-IgGAM titers. After second vaccination we observed a reduced vaccine-induced neutralizing capacity against VOCs, especially against the Omicron variant. Compared to the nAb levels after the second vaccination, the neutralizing capacity against wildtype strain and VOCs was significantly enhanced after third vaccination. In saliva samples, relevant levels of RBD antibodies were detected in convalescent samples but not in vaccinees. CONCLUSIONS: Our data demonstrate that BNT162b2 vaccinated individuals generate relevant nAbs titers, which begin to decrease within three months after immunization and show lower neutralizing potential against VOCs as compared to the wildtype strain. Large proportion of vaccine-induced S1-IgG might be non-neutralizing whereas RBD-IgGAM appears to be a good surrogate marker to estimate nAb levels. A third vaccination increases the nAb response. Furthermore, the systemic vaccine does not seem to elicit readily detectable mucosal immunity.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Imunidade nas Mucosas , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Vacina BNT162 , Anticorpos Antivirais , Anticorpos Neutralizantes , Vacinação , Imunoglobulina G , RNA Mensageiro/genética , Vacinas de mRNA
7.
Front Bioeng Biotechnol ; 10: 801870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309990

RESUMO

In 2019, the novel highly infectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak rapidly led to a global pandemic with more than 346 million confirmed cases worldwide, resulting in 5.5 million associated deaths (January 2022). Entry of all SARS-CoV-2 variants is mediated by the cellular angisin-converting enzyme 2 (ACE2). The virus abundantly replicates in the epithelia of the upper respiratory tract. Beyond vaccines for immunization, there is an imminent need for novel treatment options in COVID-19 patients. So far, only a few drugs have found their way into the clinics, often with modest success. Specific gene silencing based on small interfering RNA (siRNA) has emerged as a promising strategy for therapeutic intervention, preventing/limiting SARS-CoV-2 entry into host cells or interfering with viral replication. Here, we pursued both strategies. We designed and screened nine siRNAs (siA1-9) targeting the viral entry receptor ACE2. SiA1, (siRNA against exon1 of ACE2 mRNA) was most efficient, with up to 90% knockdown of the ACE2 mRNA and protein for at least six days. In vitro, siA1 application was found to protect Vero E6 and Huh-7 cells from infection with SARS-CoV-2 with an up to ∼92% reduction of the viral burden indicating that the treatment targets both the endosomal and the viral entry at the cytoplasmic membrane. Since the RNA-encoded genome makes SARS-CoV-2 vulnerable to RNA interference (RNAi), we designed and analysed eight siRNAs (siV1-8) directly targeting the Orf1a/b region of the SARS-CoV-2 RNA genome, encoding for non-structural proteins (nsp). As a significant hallmark of this study, we identified siV1 (siRNA against leader protein of SARS-CoV-2), which targets the nsp1-encoding sequence (a.k.a. 'host shutoff factor') as particularly efficient. SiV1 inhibited SARS-CoV-2 replication in Vero E6 or Huh-7 cells by more than 99% or 97%, respectively. It neither led to toxic effects nor induced type I or III interferon production. Of note, sequence analyses revealed the target sequence of siV1 to be highly conserved in SARS-CoV-2 variants. Thus, our results identify the direct targeting of the viral RNA genome (ORF1a/b) by siRNAs as highly efficient and introduce siV1 as a particularly promising drug candidate for therapeutic intervention.

8.
Front Immunol ; 13: 825702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340807

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic flavivirus which is endemic in many European and Asian countries. Humans can get infected with TBEV usually via ticks, and possible symptoms of the infection range from fever to severe neurological complications such as encephalitis. Vaccines to protect against TBEV-induced disease are widely used and most of them consist of whole viruses, which are inactivated by formaldehyde. Although this production process is well established, it has several drawbacks, including the usage of hazardous chemicals, the long inactivation times required and the potential modification of antigens by formaldehyde. As an alternative to chemical treatment, low-energy electron irradiation (LEEI) is known to efficiently inactivate pathogens by predominantly damaging nucleic acids. In contrast to other methods of ionizing radiation, LEEI does not require substantial shielding constructions and can be used in standard laboratories. Here, we have analyzed the potential of LEEI to generate a TBEV vaccine and immunized mice with three doses of irradiated or chemically inactivated TBEV. LEEI-inactivated TBEV induced binding antibodies of higher titer compared to the formaldehyde-inactivated virus. This was also observed for the avidity of the antibodies measured after the second dose. After viral challenge, the mice immunized with LEEI- or formaldehyde-inactivated TBEV were completely protected from disease and had no detectable virus in the central nervous system. Taken together, the results indicate that LEEI could be an alternative to chemical inactivation for the production of a TBEV vaccine.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Vacinas Virais , Vírus , Animais , Anticorpos Antivirais , Elétrons , Encefalite Transmitida por Carrapatos/prevenção & controle , Formaldeído , Camundongos , Vacinas de Produtos Inativados
9.
Methods Mol Biol ; 2414: 97-113, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784034

RESUMO

Vaccines consisting of whole inactivated bacteria (bacterins) are generated by incubation of the pathogen with chemicals. This is a time-consuming procedure which may lead to less immunogenic material, as critical antigenic structures can be altered by chemical modification. A promising alternative approach is low-energy electron irradiation (LEEI). Like other types of ionizing radiation, it mainly acts by destroying nucleic acids but causes less damage to structural components like proteins. As the electrons have a limited penetration depth, LEEI is currently used for sterilization of surfaces. The inactivation of pathogens in liquids requires irradiation of the culture in a thin film to ensure complete penetration. Here, we describe two approaches for the irradiation of bacterial suspensions in a research scale. After confirmation of inactivation, the material can be directly used for vaccination, without any purification steps.


Assuntos
Vacinas Bacterianas , Elétrons , Bactérias , Radiação Ionizante , Vacinas de Produtos Inativados
10.
Transbound Emerg Dis ; 69(5): 2779-2787, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34919790

RESUMO

West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne viruses that belong to the Japanese encephalitis virus serocomplex within the genus Flavivirus. Due to climate change and the expansion of mosquito vectors, flaviviruses are becoming endemic in increasing numbers of countries. WNV infections are reported with symptoms ranging from mild fever to severe neuro-invasive disease. Until now, only a few USUV infections have been reported in humans, mostly with mild symptoms. The serological diagnosis and differentiation between flavivirus infections, in general, and between WNV and USUV, in particular, are challenging due to the high degree of cross-reacting antibodies, especially of those directed against the conserved fusion loop (FL) domain of the envelope (E) protein. We have previously shown that E proteins containing four amino-acid mutations in and near the FL strongly reduce the binding of cross-reactive antibodies leading to diagnostic technologies with improved specificities. Here, we expanded the technology to USUV and analyzed the differentiation of USUV- and WNV-induced antibodies in humans. IgG ELISAs modified by an additional competition step with the heterologous antigen resulted in overall specificities of 93.94% for WNV Equad and 92.75% for USUV Equad. IgM antibodies against WNV could be differentiated from USUV IgM in a direct comparison using both antigens. The data indicate the potential of the system to diagnose antigenically closely related flavivirus infections.


Assuntos
Infecções por Flavivirus , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Anticorpos Antivirais , Antígenos Heterófilos , Epitopos , Flavivirus/genética , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Humanos , Imunoglobulina G , Imunoglobulina M , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética
12.
Viruses ; 13(7)2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34372551

RESUMO

BACKGROUND: In 2015-2016, a large Zika virus (ZIKV) outbreak occurred in the Americas. Although the exact ZIKV antibody kinetics after infection are unknown, recent evidence indicates the rapid waning of ZIKV antibodies in humans. Therefore, we aimed to determine the levels of ZIKV antibodies more than three years after a ZIKV infection. METHODS: We performed ZIKV virus neutralization tests (VNT) and a commercial ZIKV non-structural protein 1 (NS1) IgG ELISA in a cohort of 49 participants from Suriname who had a polymerase-chain-reaction-confirmed ZIKV infection more than three years ago. Furthermore, we determined the presence of antibodies against multiple dengue virus (DENV) antigens. RESULTS: The ZIKV seroprevalence in this cohort, assessed with ZIKV VNT and ZIKV NS1 IgG ELISA, was 59.2% and 63.3%, respectively. There was, however, no correlation between these two tests. Furthermore, we did not find evidence of a potential negative influence of DENV immunity on ZIKV antibody titers. CONCLUSIONS: ZIKV seroprevalence, assessed with two commonly used serological tests, was lower than expected in this cohort of participants who had a confirmed previous ZIKV infection. This can have implications for future ZIKV seroprevalence studies and possibly for the duration of immunological protection after a ZIKV infection.


Assuntos
Anticorpos Neutralizantes/análise , Infecção por Zika virus/imunologia , Zika virus/imunologia , Adulto , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/análise , Anticorpos Antivirais/imunologia , Estudos de Coortes , Reações Cruzadas/imunologia , Dengue/virologia , Vírus da Dengue/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Masculino , Pessoa de Meia-Idade , Testes de Neutralização/métodos , Estudos Soroepidemiológicos , Testes Sorológicos/métodos , Suriname , Zika virus/patogenicidade , Infecção por Zika virus/metabolismo , Infecção por Zika virus/virologia
13.
Emerg Infect Dis ; 27(9): 2466-2470, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34424166

RESUMO

Among 713 equids sampled in northeastern Brazil during 2013-2018, West Nile virus seroprevalence was 4.5% (95% CI 3.1%-6.3%). Mathematical modeling substantiated higher seroprevalence adjacent to an avian migratory route and in areas characterized by forest loss, implying increased risk for zoonotic infections in disturbed areas.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Brasil/epidemiologia , Ecologia , Estudos Soroepidemiológicos , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária
14.
Front Immunol ; 12: 684052, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149724

RESUMO

Background: With increasing clinical use of NK-92 cells and their CAR-modified derivatives in cancer immunotherapy, there is a growing demand for efficient production processes of these "off-the-shelf" therapeutics. In order to ensure safety and prevent the occurrence of secondary tumors, (CAR-)NK-92 cell proliferation has to be inactivated before transfusion. This is commonly achieved by gamma irradiation. Recently, we showed proof of concept that low energy electron irradiation (LEEI) is a new method for NK-92 inactivation. LEEI has several advantages over gamma irradiation, including a faster reaction time, a more reproducible dose rate and much less requirements on radiation shielding. Here, LEEI was further evaluated as a promising alternative to gamma irradiation yielding cells with highly maintained cytotoxic effector function. Methods: Effectiveness and efficiency of LEEI and gamma irradiation were analyzed using NK-92 and CD123-directed CAR-NK-92 cells. LEE-irradiated cells were extensively characterized and compared to gamma-irradiated cells via flow cytometry, cytotoxicity assays, and comet assays, amongst others. Results: Our results show that both irradiation methods caused a progressive decrease in cell viability and are, therefore, suitable for inhibition of cell proliferation. Notably, the NK-mediated specific lysis of tumor cells was maintained at stable levels for three days post-irradiation, with a trend towards higher activities after LEEI treatment as compared to gamma irradiation. Both gamma irradiation as well as LEEI led to substantial DNA damage and an accumulation of irradiated cells in the G2/M cell cycle phases. In addition, transcriptomic analysis of irradiated cells revealed approximately 12-fold more differentially expressed genes two hours after gamma irradiation, compared to LEEI. Analysis of surface molecules revealed an irradiation-induced decrease in surface expression of CD56, but no changes in the levels of the activating receptors NKp46, NKG2D, or NKp30. Conclusions: The presented data show that LEEI inactivates (CAR-)NK-92 cells as efficiently as gamma irradiation, but with less impact on the overall gene expression. Due to logistic advantages, LEEI might provide a superior alternative for the manufacture of (CAR-)NK-92 cells for clinical application.


Assuntos
Proliferação de Células/efeitos da radiação , Dano ao DNA , Raios gama , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular , Elétrons , Citometria de Fluxo , Humanos
15.
Front Vet Sci ; 8: 655715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981744

RESUMO

The zoonosis Q fever is caused by the obligate intracellular bacterium Coxiella burnetii. Besides the main transmission route via inhalation of contaminated aerosols, ticks are discussed as vectors since the first isolation of the pathogen from a Dermacentor andersonii tick. The rare detection of C. burnetii in ticks and the difficult differentiation of C. burnetii from Coxiella-like endosymbionts (CLEs) are questioning the relevance of ticks in the epidemiology of Q fever. In this review, literature databases were systematically searched for recent prevalence studies concerning C. burnetii in ticks in Europe and experimental studies evaluating the vector competence of tick species. A total of 72 prevalence studies were included and evaluated regarding DNA detection methods and collection methods, country, and tested tick species. Specimens of more than 25 different tick species were collected in 23 European countries. Overall, an average prevalence of 4.8% was determined. However, in half of the studies, no Coxiella-DNA was detected. In Southern European countries, a significantly higher prevalence was observed, possibly related to the abundance of different tick species here, namely Hyalomma spp. and Rhipicephalus spp. In comparison, a similar proportion of studies used ticks sampled by flagging and dragging or tick collection from animals, under 30% of the total tick samples derived from the latter. There was no significant difference in the various target genes used for the molecular test. In most of the studies, no distinction was made between C. burnetii and CLEs. The application of specific detection methods and the confirmation of positive results are crucial to determine the role of ticks in Q fever transmission. Only two studies were available, which assessed the vector competence of ticks for C. burnetii in the last 20 years, demonstrating the need for further research.

16.
Emerg Microbes Infect ; 10(1): 774-781, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33830901

RESUMO

Monitoring the humoral protective immune response and its durability after SARS-CoV-2 infections is essential for risk assessment of reinfections, the improvement of diagnostic methods and the evaluation of vaccine trials. We have analyzed neutralizing antibodies and IgG responses specific to different antigens, including the inactivated whole-virion of SARS-CoV-2, the spike subunit 1 protein and its receptor binding domain, as well as the nucleocapsid protein. We show the dynamic developments of the responses from the early convalescent stages up to 9 months post symptoms onset in follow-up samples from 57 COVID-19 patients with varying clinical severity. By correlating antibody signals to neutralizing titres, valid diagnostic markers for the estimation of neutralizing protection could be identified.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/virologia , Imunidade Humoral , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos de Coortes , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Feminino , Seguimentos , Alemanha , Humanos , Imunoglobulina G/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Fosfoproteínas/imunologia , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/imunologia , Fatores de Tempo , Vírion/imunologia , Adulto Jovem
17.
GMS Hyg Infect Control ; 16: Doc03, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520604

RESUMO

Background: The diagnosis of SARS-CoV-2 infection relies on RT-PCR from nasopharyngeal swabs. The pre-analytical value of different methods of material harvesting for SARS-CoV-2 are unknown. Methods: We conducted a comprehensive investigation of the pre-analytical performance for different pharyngeal sampling procedures in hospitalized patients with confirmed SARS-CoV-2 infection. In addition to swabs taken simultaneously from different locations, saliva and pharyngeal lavages were also analyzed using RT-PCR. Results: In 10 COVID-19 patients, standard nasopharyngeal swabs detected 8 out of 10 positive patients, whereas swabs taken from the palatoglossal arch resulted in 9 correct-positive results. Brushing the posterior pharynx wall with swabs resulted in detection of 9 out of 10 positive patients with no difference using either dry swabs or liquid Amies medium. A strong correlation between Ct values of both swab materials was observed. Pharyngeal lavages yielded 6 out of 10 positive results in concordance with 85% of nasopharyngeal swabs in late-stage COVID-19 patients. Investigating 23 patients with early SARS-CoV-2 infection, pharyngeal lavages showed a concordance rate of 100% compared to nasopharyngeal swabs. Conclusions: The diagnostic performance of swabs taken from the palatoglossal arch in detecting SARS-CoV-2 infection is similar to that of specimens taken from the nasopharyngeal region. However, the former sampling method is associated with less discomfort and much easier to perform. Pharyngeal lavages may replace swabs for mass screening in early stages of SARS-CoV-2 infection. The predictive values are comparable, and the procedure is performed without exposing healthcare workers to transmission risks.

18.
Malar J ; 20(1): 66, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33526038

RESUMO

BACKGROUND: Children are the most vulnerable group affected by malaria and other tropical, vector-borne diseases in low-resource countries. Infants presenting with acute onset fever represent a major sector of outpatient care in the Lake Victoria region. Misclassification and overuse of antibiotics and anti-malarial medications are consistent problems. Identifying the prevalent mosquito-borne pathogens in the region will reduce the prescription of non-indicated medicines. METHODS: The literature was reviewed focusing on the mosquito-borne pathogens most prevalent in sub-Saharan Africa. Accordingly, an assay comprised of a multiplex-reverse transcriptase-polymerase chain reaction and an enzyme-linked immunosorbent assay (multiplex-RT-PCR-ELISA) was designed and validated in its ability to identify and differentiate nine human mosquito-borne pathogens including eight arboviruses and Plasmodium sp., the aetiologic agents of malaria. Blood samples obtained from 132 children suspected of having malaria were spotted and preserved on Whatman® 903 protein sample cards. Multiplex-RT-PCR-ELISA analysis was assessed and compared to results obtained by blood smear microscopy and the malaria rapid diagnostic test (RDT). RESULTS: Nine out of nine pathogens were amplified specifically by the multiplex-RT-PCR-ELISA panel. Twenty-seven out of 132 paediatric patients presenting with acute fever were infected with Plasmodium sp., confirmed by multiplex-RT-PCR. The results of blood smear microscopy were only 40% sensitive and 92.8% specific. The malaria RDT, on the other hand, detected acute Plasmodium infections with 96.3% sensitivity and 98.1% specificity. The preservation of Plasmodium sp. in clinical sera and whole blood samples spotted on sample cards was evaluated. The duration of successful, sample card storage was 186 to 312 days. CONCLUSIONS: Reliable, easy-to-use point of care diagnostic tests are a powerful alternative to laboratory-dependent gold standard tests. The multiplex-RT-PCR-ELISA amplified and identified nine vector-borne pathogens including Plasmodium sp. with great accuracy. Translation of improved diagnostic approaches, i.e., multiplex-RT-PCR-ELISA, into effective treatment options promises to reduce childhood mortality and non-indicated prescriptions.


Assuntos
Testes Diagnósticos de Rotina/métodos , Teste em Amostras de Sangue Seco/métodos , Mosquitos Vetores/parasitologia , Reação em Cadeia da Polimerase Multiplex/métodos , Plasmodium/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Criança , Pré-Escolar , Humanos , Lactente , Sensibilidade e Especificidade , Tanzânia
20.
Vaccines (Basel) ; 8(4)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066262

RESUMO

Zika virus (ZIKV) is a zoonotic, human pathogenic, and mosquito-borne flavivirus. Its distribution is rapidly growing worldwide. Several attempts to develop vaccines for ZIKV are currently ongoing. Central to most vaccination approaches against flavivirus infections is the envelope (E) protein, which is the major target of neutralizing antibodies. Insect-cell derived, recombinantly expressed variants of E from the flaviviruses West Nile and Dengue virus have entered clinical trials in humans. Also for ZIKV, these antigens are promising vaccine candidates. Due to the structural similarity of flaviviruses, cross-reactive antibodies are induced by flavivirus antigens and have been linked to the phenomenon of antibody-dependent enhancement of infection (ADE). Especially the highly conserved fusion loop domain (FL) in the E protein is a target of such cross-reactive antibodies. In areas where different flaviviruses co-circulate and heterologous infections cannot be ruled out, this is of concern. To exclude the possibility that recombinant E proteins of ZIKV might induce ADE in infections with related flaviviruses, we performed an immunization study with an insect-cell derived E protein containing four mutations in and near the FL. Our data show that this mutant antigen elicits antibodies with equal neutralizing capacity as the wildtype equivalent. However, it induces much less serological cross-reactivity and does not cause ADE in vitro. These results indicate that mutated variants of the E protein might lead to ZIKV and other flavivirus vaccines with increased safety profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA